

BME Faculty of Mechanical Engineering

MSc in Mechanical Engineering Modelling Compulsory subject

Department of Manufacturing

Department of Machine and

Department of Manufacturing

Department of Manufacturing

Department of Machine and

Science and Engineering

Science and Engineering

Science and Engineering

Product Design

Product Design

COURSE DESCRIPTION AND DATASHEET 2015.09.01.

Machine Design and Production Technology

1	C-1-11-	C 4	I /C /I - 1- /	C 1'4 I		
1.	Subject code	Semester	Lec/Sem/Lab/reqs	Credit Language		
	BMEGEGEMW01	1	2+1+0/e	4 English		
2. Re	2. Responsible person for the subject:					
Name	e	Posi	ition	Department		
Dr. K	Körtélyesi Gábor	assi	stant professor	Department of Machine and		
	•		•	Product Design		
3. Le	ecturer(s):					
Name	e	Posi	ition	Department		
Dr. V	⁷ áradi Károly	Prof	fessor	Department of Machine and		
	•			Product Design		
Dr. V	váncza József	asso	ociate professor	Department of Manufacturing		
			•	Science and Engineering		
Dr. N	Vémeth István	asso	ociate professor	Department of Manufacturing		
			•	Science and Engineering		

associate professor

assistant professor

honorary professor

research fellow

The phone numbers, e-mail addresses and office hours of the lecturers from the Department of Machine and Product Design during the semester can be found on the following webpage: http://gt3.bme.hu/, under the Staff menu.

lecturer, assistant

The phone numbers, e-mail addresses of the lecturers from the Department of Manufacturing Science and Engineering can be found on the following webpage: www.manuf.bme.hu, under the Staff menu (appointment by e-mail)

4. The subject builds on knowledge of the following topics:

General knowledge on engineering design and production on Bachelor level.

5. Course prerequisites and advisories:

Dr. Szalay Tibor

Dr. Körtélyesi Gábor

Dr. Markos Sándor

Dr. Boór Ferenc

Vidovics Balázs

The course is a Masters course, Bachelor degree is required. There are no course prerequisites.

6. Aims and objectives:

The goal of the course is to give a theoretical overview on the fields of machine design and production technology, according to the detailed topics below. Some elements of the methodology are covered on the seminars more in depth.

Machine design: Design principles and methods. Modern design techniques. Design process models. Requirements. Conceptual design methods. Evaluation and selection in the design process. Structural behavior and modeling. Design of frame structures. Load transfer between engineering components. Structural optimization (object function, design variables, constrains, shape and size optimization).

Production: Machine tools, robots and other manufacturing equipment, devices and fixtures, machining principles, production procedures and processes, production volume, batches and series. Manufacturability and tooling criteria, preliminary conditions and production analysis, methods of sequencing operations, production planning and scheduling. Production management (TQC and JIT), automated production; cellular manufacturing and manufacturing systems. Product data and technical document management (PDM, TDM), engineering changes and production workflow management (CE, ECM).

7. Course calendar

Week	Lectures (R. bd. 109.)	Seminars
1.		No seminar
odd	Manufacturing systems. (Production) (11/09/15)	(09/09/15)
2.	Design methodology – Problems and processes.	N
even	(Design) (18/09/15)	No seminar - university sports day (16/09/15)
3.	Analysis of manufacturing demands.	Simulation of manufacturing systems
odd	(Production) (25/09/15)	(Production) (23/09/15) (G 123)
4.	Design methodology – Problems and solutions.	Simulation of manufacturing systems
even	(Design) (02/10/15)	(Production) (30/09/15) (G 123)
5.	Design for manufacture (Production) (09/10/15)	Problem definition and specification. List of
odd	Design for manufacture (Production) (09/10/13)	requirements (Design) (07/10/15) (R111)
6.	Design methodology – Creativity and	Problem definition and specification. List of
even	Innovation in Design. (Design) (16/10/15)	requirements (Design) (14/10/15) (R111)
7.	National Holiday – No lecture (23/10/15)	Tolerance and SPC (Production) (21/10/15)
odd	National Holiday – No lecture (25/10/13)	(G123)
8.	Material requirements planning (MRP)	Tolerance and SPC (Production) (28/10/15)
even	(Production) (30/10/15)	(G123)
9.	CAE design tools – Structural models. Process	Functional analysis, functional structure.
odd	of analysis. (Design) (06/11/15)	(Design) (04/11/15) (R111)
10.	Production planning (Production) (13/11/15)	Functional analysis, functional structure.
	Froduction planning (Froduction) (13/11/13)	(Design) (11/11/15) (R111)
11.	Costs in design (Design) (20/11/15)	Production planning (Production)
odd	Costs in design (Design) (20/11/13)	(18/11/15) (G 123)
12.	University Open Day – No lecture (27/11/15)	Production planning (Production)
even	Oniversity Open Day – No feeture (27/11/13)	(25/11/15) (G 123)
13.		Principle solutions, concept generation.
odd	Test_(04/12/15)	Evaluation and selection. (Design)
Odd		(02/12/15) (R111)
14.		Principle solutions, concept generation.
even	Make-up Test (if necessary) (11/12/15)	Evaluation and selection. (Design)
CVCII		(09/12/15) (R111)
	Extra make-up Test (if necessary, for those who	
Make-Up	have attempted at least one test either on 13 th or	
Week	14 th week) (date and time to be announced on	
	14 th week)	

8. Requirements

- 8.1 Submitting seminar documents prepared throughout the seminar. Each seminar students will be challenged with short tasks to be solved during the given seminar. Teachers provide guidance. Students will work in small groups, prepare required deliverables and submit them signed at the end of the seminar. No mid-term points are collected upon the seminar tasks, however students must contribute to at least 4 out of the 6 tasks in the semester.
- 8.2 Written mid-term test. A mid-term test should be written covering the lecture topics, maximum points of 100. (No minus points for wrong answer.)
- 8.3. During the semester (conditions for signature):
 - Number of the absence from the seminars has to be maximum 2.
 - Test should be fulfilled at least 50% (min. 50 points equals pass).
- 8.4 In the exam period (conditions for examination mark)
 - Written examination (minimum 50% equals pass).

9. Supplementary opportunity

The test can be repeated in the 14th week. Seminar tasks should be done in the assigned class primarily, supplementary option is the other class in the same topic. For further information see 7. Course calendar.

10. The determination method of the exam mark

1. Pre-Mark. For those who have successfully received a signature, a pre-mark is calculated upon the midterm test points, accordingly the limits below. The pre-mark is an option for the student to accept it as a final exam mark.

76 - 88	good
89 - 100	excellent

2. Exam. A max. 50 points test exam is obligatory in writing. The result points are added to half of the mid-term test points, or simply multiplied by two (whichever results in higher points) and the sum is evaluated following the limits below.

0 - 49	fail (1)
50 - 62	pass (2)
63 - 75	satisfactory (3)
76 - 88	good (4)
89 - 100	excellent (5)

11. Consultation opportunity

Each and every lecturer/tutor involved in the course has open office hours, please check the websites of their departments. Occasionally appointments at other times are possible upon previous arrangement.

12. Recommended literature

- 1. Ullman, D.G.: The mechanical design process, McGraw Hill, 1997.
- 2. Grabowski, H.: Universal design theory, Shaker Verlag, Aachen, 1998.
- 3. Dym, C.L.: Engineering design, Cambridge University Press, 1994.
- 4. Kalpakjian, Schmid: Manufacturing Engineering and Technology, Prentice-Hall Inc. Publ. 2001, ISBN 0-201-36131-0
- 5. D. J. Williams: Manufacturing Systems An introduction to the technologies, Second Edition, Kluwer Academic Publishers, 1994, ISBN 0412605805
- 6. Nanua Singh, Divakar Rajamani: Cellular Manufacturing Systems Design, planning and control, Chapmen & Hall, London, 1995, ISBN 041255710 X
- 7. Hopp, W.J.; Spearman, M.L, Factory physics, Foundations of manufacturing management, Irwin/McGraw-Hill, second edition, 2001.

13. Working hours required for the subject

42 Contact hours. Preparations for test and exam: 42 hours.

14. Responsible person for the topics of the subject

Name	Position	Department
Dr. Körtélyesi Gábor	assistant professor	Department of Machine and
		Product Design
Dr. Szalay Tibor	associate professor	Department of Manufacturing
		Science and Engineering
Balázs Vidovics (course administration)	lecturer, assistant	Department of Machine and
		Product Design

15. Grading

Hungarian (BME) and ECTS grading scale

Hungarian grade	ECTS	Explanation for
	equivalent	the Hungarian
		grade
5	A	Excellent
4	В	Good
3	С	Satisfactory
2	D	Pass
1	F	Fail
Nem jelent meg	DNA	Did not attend
		(no credit)
Nem vizsgázott	I	Incomplete
		(no credit)
Aláírva	S	Signed
		(no credit)
Megtagadva	R	Refused
		(no credit)

16. Others

Unless otherwise stated the regulations of the Code of Studies and Exams are governing.

The official webpage of the course is http://gt3.bme.hu/mw01. Webpage to be accessed after successful registration on the site.

